This study quantitatively examined changes in the workplace locations of physicians, as well as the relationship of that change to a physician’s attributes and timing. The government of Japan has considered the geographic distribution of physicians based on the number of physicians in prefectural and municipal areas. This is an easy method, but it is too imprecise to describe the facts of distribution. For example, as an example of uneven geographic distribution, the government pointed out that the number of physicians per capita in the largest prefectures was twice that of the smallest prefectures [9]. GIS is more widely used now than ever before, and this technology can help us to quantitatively understand the geographic distribution of physicians.
This study examined the movement of physicians over time. Here, we propose a novel approach for analyzing the unevenness of geographical physician distribution. The results of this study revealed that, on average, physicians moved between 10 and 30 km from their first location of employment at the 10 and 20 year marks since becoming a physician. This does not seem to be a great distance of movement. Physicians tend to maintain a connection with the locations in which they were first employed. Additionally, the geographical movement of female physicians was found to be smaller than that of male physicians. It may be a more difficult task to convince female physicians to relocate from urban areas than to convince male physicians for the purpose of ensuring an adequate labor force.
There is a recent tendency for male physicians to concentrate in urban areas. Using our study as a reference, the ratio of aspiring female physicians has remained stagnant (31.5% in 2016). Moreover, when the employment rate of physicians is taken into account by examining physician age, the ratio of female physicians in 2035 is expected to remain at 30% [23]. Although it is true that female physicians have tended to concentrate in urban areas, the effects of female physicians on the overall geographical distribution of physicians in the future will likely be of less impact. Trends in the employment of male physicians have driven the phenomenon of urban concentration. The urban population was 34.4% in 1996, but had increased to 36.6% by 2014 (an increase of 2.4%) [24]. For physicians, the percentage increased from 39.1 to 43.8% during the same period (an increase of 4.7%). The concentration of physicians exceeded the percentage of total population in urban areas both in recent levels and in the change that occurred from 1996 to 2014. Government agencies predict that the concentration of Japan’s population into urban areas is expected to increase from 2010 to 2040 [25]. Physicians may expect that the demand for medical services is going to increase in urban areas, which is reflected by their geographical movements. It is our opinion that the general choice of work location for physicians is a rational one.
Furthermore, medical school entrance examinations have become more difficult, which may present a relative advantage for persons originating in urban areas. Many studies have reported that in order to increase the number of physicians in rural and remote areas, it is effective to educate persons from those regions as physicians and to subsequently enable them to develop work experience as early as possible [26,27,28]. Matsumoto et al. noted that a policy executed at a medical school in Japan, which was similar to the national policy launched in 2004, was effective for retaining physicians in their home prefecture [29]. Adding to previous knowledge, our results suggest that Japan’s recent selective enrolment policy, where students are obliged to work in a designated place for several years and receive a loan deduction, will be effective. As we have shown, once physicians choose an underserved area, they are not likely to move very far from their first workplace throughout their professional career. In addition, to mitigate geographic imbalance, our results suggest it might be effective to plan the first workplaces for all newly registered physicians. This policy would not regulate freedom of movement, but we can assume physicians will not move very far from their first workplaces. One advantage is that the subjects of this policy include 9000 newly registered physicians per year. The government could thus achieve geographic equity more rapidly than with the present selective enrolment policy, whose target is only 1000 physicians. Although a controversial point could concern how we plan the first workplace in view of attributes, motivation, current situations, future prospects, and so on, some developed countries have already introduced similar institutions.
Simultaneous to the development of a quota system for medical schools in 2004, the clinical training system became mandatory [30, 31]. Under the new clinical training system, a 2-year training period was required for physicians. The mandatory clinical training system seems to have affected the patterns of geographical physician movement. Under the new system, the number of trainee spots offered by hospitals has increased. As a result, the number of physicians who are able to select hospitals in urban areas has risen.
It is possible that the mandatory clinical training system has a counter-effect on the governmental policy of assigning enrolment spaces to physicians from rural areas. This is interesting to note, since both measures were implemented at the same time. The results of this study revealed that the distance of movement was greater for individuals who became physicians before 2002. Because male physicians tend to select urban areas as locations for starting their careers, and do not move far from those locations, the overall tendency of physicians to concentrate in urban areas is expected to increase. However, if excessive competition occurs for physicians in urban areas, they can theoretically relocate [32].
In this study, the survey year (period) is beginning to have a significant effect on the chances of a physician’s geographical movement. The survey year is affected by historical and environmental contexts, and also affects each physician equally. Given this result, future human resource policies aimed at the geographic induction of physicians may not need to differentiate according to the registration year (cohort) of physicians. Regarding the effects of age on the movement of physicians, there is a greater tendency for younger physicians to relocate. Why is the effect of period on the geographical movement of physicians increasing? Based on the data that we used, it is impossible to directly ascertain the reasons for the geographic movement of physicians. However, we can present some possible explanations. For example, the aging of physicians explains their movement, as shown by the APC model, and the aging of the population has effects from the demand side. Japan’s population has been gradually aging, with 27% of the population over age 65 in 2017. Population aging seems to appear as the effect of period in the APC model by increasing the demand for healthcare services. Furthermore, developments in transportation networks and similar lifestyle preferences, such as work and living locations, may have influenced the geographical movement of physicians. These potential factors are all related to social environment. In other words, those factors are expressed as the effect of period in the APC model.
Developments in infrastructure likely affect access to healthcare services. Physicians are more inclined to choose urban areas than the general population [4]. Our thinking about improving the geographic distribution of the health workforce has focused on how to settle physicians in underserved areas. Ultimately, improving access to health services is essential. Japan has constructed road transportation networks all over the country, and while the total length of general public roads has been mostly static, the length of express roads has increased by about 50% in the past 20 years. High-speed transportation systems can improve access to healthcare services by moving people more quickly. Physicians can commute from urban areas to rural areas more easily, and patients can have the opportunity to see more available physicians.
This study has several limitations. First of all, its intention was to examine the reasons physicians work in certain locations, and to explore the reasons they relocate. However, the reasons for their geographical movement remain unclear because the data is retrospective and does not contain information on the potential factors that are affecting their tendency to choose a work location, such as income, or lifestyle [1, 2]. This study uses time to explain the geographical movement of physicians. Because this factor appears to be important for ensuring the necessary number of physicians working in each region, the future elucidation of the reasons behind geographical movement is necessary. Additionally, in order to measure the geographical movement of physicians, a representative point of the municipality in which the physician worked was substituted, but this is an inaccurate way of exploring the data. In a previous study, we revealed that municipalities with especially small populations and large areas expressed apparent differences when the same method was used [33]. Therefore, there is a possibility that this study overestimated the geographic movement of physicians working in rural regions with large areas. When of all the available data is encoded by using GIS, it will be possible to calculate the exact distances of physician movement. However, because the quantity of data was large, it was not possible to use that method. Finally, physician age was substituted for experience in the APC model because age and experience years are highly correlated. However, the use of age in the model makes the purpose of the analysis easier to understand.